High-speed, untappable communications on drawing board

Thursday, 07 January, 2010

QuintessenceLabs, a leader in ultra-secure quantum communications, has teamed up with the Royal Melbourne Institute of Technology (RMIT) to miniaturise its second generation Quantum Key Distribution (QKD) technology into a silicon photonic microchip.

The project, supported by a linkage grant from the Australian Research Council, is an important element in the evolution of QuintessenceLabs’ breakthrough second-generation QKD technology. The technology, employing one-time pad encryption in real time, offers high-speed, untappable communications. Its integration onto a silicon photonic chip will considerably reduce the size and cost of the cryptosystem.

“This merger of technologies brings the most powerful form of data encryption, one which is ultra-secure, down into a chip-scale device,” said Vikram Sharma, founder and CEO of QuintessenceLabs.

“The collaboration with the RMIT paves the way for deep quantum technology to become commercially available at a very competitive price point - making it accessible not only to enterprise customers but also the retail market.”

Commenting on the linkage project, Professor Xinghuo Yu, Director of RMIT’s Platform Technologies Research Institute said, "This partnership is an excellent example of what the RMIT Platform Technologies Research Institute aims to achieve. Here we have RMIT academic researchers partnering with one of Australia's advanced ICT companies to develop a highly innovative but practical frontier technology platform which meets real world needs."

Related News

Kyndryl enhances Agentic AI Framework

Kyndryl has announced enhancements to its Agentic AI Framework aimed at helping customers adopt...

Databricks enters $150m partnership with OpenAI

Databricks and OpenAI will collaborate to expand the accessibility of generative AI models for...

Cybersecurity skills gap widening in Australia: report

An ISACA study has found that fewer Australian enterprises are training staff for security roles...


  • All content Copyright © 2025 Westwick-Farrow Pty Ltd